Photocatalytic activities of coke carbon/g-C3N4 and Bi metal/Bi mixed oxides/g-C3N4 nanohybrids for the degradation of pollutants in wastewater

نویسندگان

  • Marta Sierra
  • Emma Borges
  • Pedro Esparza
  • Jorge Méndez-Ramos
  • Jesús Martín-Gil
  • Pablo Martín-Ramos
چکیده

Different g-C3N4 composite systems (coke carbon/g-C3N4, Bi/Bi2WO6/g-C3N4 and Bi/Bi2MoO6/g-C3N4) have been assessed as photocatalysts for wastewater pollutants removal. The coke carbon/g-C3N4 hybrid, produced by thermal treatment at 550 °C of a composite made from melamine cyanurate and coke, only showed activity under UV-light irradiation. On the other hand, inorganic Bi spheres/Bi mixed oxides/g-C3N4 nanohybrids (Bi/Bi2WO6/g-C3N4 and Bi/Bi2MoO6/g-C3N4 composites), produced by thermal reduction of Bi2WO6 or Bi2MoO6 by g-C3N4, exhibited a remarkable red-shift, up to 620 nm, and allowed the visible-light driven degradation of the contaminant, albeit in combination with some adsorption.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Codeposition of Fe3O4 Nanoparticles Sandwiched Between g-C3N4 and TiO2 Nanosheets: Structure, Characterization and High Photocatalytic Activity for Efficiently Degradation of Dye Pollutants

Novel ternary nanocomposite photocatalysts based on g-C3N4/Fe3O4/TiO2 nanosheet were synthesized using simple solid combustion, hydrothermal and wetness impregnation methods. The g-C3N4 nanosheet (2D)/ Fe3O4/ TiO2 nanosheet (2D) triad-interface nanocomposite arranged in the form of Fe3O4 nanoparticle was sandwiched and well dispersed on the surface between g-C3N4 and TiO2 nanosheets. The synthe...

متن کامل

Graphitic-C3N4 nanosheets: synergistic effects of hydrogenation and n/n junctions for enhanced photocatalytic activities.

The increasing concern about environmental pollution and fossil fuel energies have urged researchers to seek renewable energy sources and methods for pollutant decomposition. Photocatalysis seems to be one of the most promising approaches, which uses natural sunlight to produce hydrogen from water and removes organic pollutants from the environment. Among the various photocatalysts, graphitic c...

متن کامل

Preparation of water-dispersible porous g-C3N4 with improved photocatalytic activity by chemical oxidation.

Hydrophilic treatment of bulk graphene-like carbon nitride (g-C3N4) for future applications has aroused extensive interest, due to its enhanced specific surface area and unusual electronic properties. Herein, water-dispersible g-C3N4 with a porous structure can be obtained by chemical oxidation of bulk g-C3N4 with K2Cr2O7-H2SO4. Acid oxidation results in the production of hydroxyl and carboxyl ...

متن کامل

A density functional study on the mechanical properties of metal-free two-dimensional polymer graphitic Carbon-Nitride

Successful synthesis of the stable metal-free two-dimensional polymer graphitic carbon-nitride with remarkable properties has made it as one of the most promising nanostructures in many novel nanodevices, especially photocatalytic ones. Understanding the mechanical properties of nanostructures is of crucial importance. Thus, this study employs density functional theory (DFT) to obtain the mecha...

متن کامل

Visible-light-driven photooxidation of alcohols using surface-doped graphitic carbon nitride

In recent years, graphitic carbon nitride (g-C3N4) has received substantial interest as a photocatalyst for metal-free, visiblelight promoted reactions. It exhibits a graphite-like, layered structure wherein tris-triazine units are connected through C–N-bonds forming a two-dimensional layer. g-C3N4 can be synthesized via various methods such as pyrolysis of urea or other nitrogen-rich precursor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2016